Niklas Krick


University position

Research Associate

Departments

Department of Zoology

Home page

https://www.zoo.cam.ac.uk/directo...

Research Themes

Developmental Neuroscience

Cellular and Molecular Neuroscience

Interests

I investigate, how during a critical period towards the end of embryogenesis, fundamental properties of neurons and neuronal circuits are determined, to specify homeostatic setpoints. To address this, I am taking advantage of the well characterised Drosophila larval locomotor network, which also has a clearly defined critical period, coincident with the transition from spontaneous unpatterned to coordinated activity. My aim is to identify cellular and molecular substrates which together define the homeostatic setpoint of the locomotor circuitry. Specifically, I am focusing on the role of calcium in this process. In neurons, calcium serves a dual function; as charge carrier and intracellular messenger, giving it the potential to decode neuronal activity during the critical period into mechanisms that are essential for establishing homeostatic setpoints. Thus, calcium dependent adjustments during the critical period can range from tuning of single cells to network wide modifications.

Research Focus

Keywords

Drosophila

calcium

critical period

homeostatic setpoint

development

Clinical conditions

No direct clinical relevance

Equipment

Behavioural analysis

Calcium imaging

Confocal microscopy

Electrophysiological recording techniques

Immunohistochemistry

Collaborators

No collaborators listed

Associated News Items


    Key publications

    Krick N, Ryglewski R, Pichler A, Bikbaev A, Götz T, Kobler O, Heine M, Ulrich T, Duch C (2021), “Separation of presynaptic Cav1 and Cav2 channel function in synaptic vesicle exo- and endocytosis by the membrane anchored Ca2+ pump PMCA” Proceedings of the National Academy of Sciences 118(28):e2106621118

    Kadas D, Klein A, Krick N, Worrel JW, Ryglewski S, Duch C (2017), “Dendritic and axonal L-type calcium channels cooperate to enhance motoneuron firing output during Drosophila larval locomotion” Journal of Neuroscience 37(45): 10971-10982