Dr Kamila Jozwik

Kamila Jozwik

University position

Sir Henry Wellcome postdoctoral fellow

Departments

Department of Psychology

Email

jozwik.kamila@gmail.com

Home page

http://kamilajozwik.com/ (personal home page)

Research Themes

Systems and Computational Neuroscience

Cognitive and Behavioural Neuroscience

Interests

Broadly I'm interested in the following questions:

How does the primate brain process visual information?

More specifically - how does the primate brain recognise objects?

What are the underlying computations of visual processing?

I use fMRI, EEG, MEG, behavioural measures and electrophysiology data, together with computational modelling (including deep neural networks) to understand these processes better.

Features correlated with categories explain the IT representation and similarity judgments reflect additional categorical variance.
Features correlated with categories explain the IT representation and similarity judgments reflect additional categorical variance.
View image full-size (3383x3211 pixels)

Research Focus

Keywords

vision

object recognition

sensory and semantic representations

computational modelling

genomics

Clinical conditions

No direct clinical relevance

Equipment

Behavioural analysis

Computational modelling

Electroencephalography (EEG)

Electrophysiology

Magnetic resonance imaging (MRI)

Collaborators

Cambridge

Zoe Kourtzi

International

Ian Charest

Radoslaw Cichy

James DiCarlo

Nancy Kanwisher

Nikolaus Kriegeskorte

Marieke Mur

Associated News Items


    Publications

    2023

    Jozwik, K.M., Kietzmann, T.C., Cichy, RM., Kriegeskorte, N., Mur, M. (2023), “Deep neural networks and semantic models explain complementary components of human ventral-stream representational dynamics” Journal of Neuroscience

    2022

    Jozwik, K.M.*, O'Keeffe*, J., Storrs*, K., Guo, W., Golan, T., Kriegeskorte, N. (2022), “Face dissimilarity judgements are predicted by representational distance in morphable and image-computable models” Proceedings of the National Academy of Sciences (*contributed equally)

    Jozwik, K.M., Najarro, E., van den Bosch, JJF., Charest, I., Cichy*, RM. and Kriegeskorte*, N. (2022), “Disentangling five dimensions of animacy in human brain and behaviour” Communications Biology (*contributed equally)

    2021

    Jozwik, K.M. (2021), “What AI can learn from the biological brain” Science

    Jozwik, K.M., Elias Najarro, E., Bosch, JJF., Charest, I., Kriegeskorte, N., and Cichy, RM. (2021), “Disentangling dimensions of animacy in human brain and behaviour” bioRxiv

    Jozwik, K.M., Kietzmann, T.C., Cichy, R.M., Kriegeskorte, N., Mur, M. (2021), “Deep neural networks and visuo-semantic models explain complementary components of human ventral-stream representational dynamics” bioRxiv

    2020

    Adhya, D., Swarup, V., Nagy, R., Dutan, L., Shum, C., Valencia-Alarcón, E.P., Jozwik, K.M., Mendez, M.A, Horder, J., Loth, E., Nowosiad, P., Lee, I., Skuse, D., Flinter, F.A., Murphy, D., McAlonan, G., Geschwind, D.H, Price, J., Carroll, J., Srivastava, D.P., Baron-Cohen, S. (2020), “Atypical neurogenesis in induced pluripotent stem cell (iPSC) from autistic individuals” Biological Psychiatry

    Lee, H., Margalit, E., Jozwik, K.M., Cohen, M.A., Kanwisher, N., Yamins, D.L.K, DiCarlo, J.J. (2020), “Topographic deep artificial neural networks reproduce the hallmarks of the primate inferior temporal cortex face processing network” BioRxiv

    2019

    Cichy, R. M., Kriegeskorte, N., Jozwik, K.M., van den Bosch, J.J.F. , Charest, I. (2019), “The spatiotemporal neural dynamics underlying perceived similarity for real-world objects” Neuroimage, 194, 12-24

    Jozwik, K.M., Lee, H., Kanwisher, N. and DiCarlo, J.J. (2019), “Are topographic deep convolutional neural networks better models of the ventral visual stream?” Conference on Cognitive Computational Neuroscience

    Jozwik, K.M., Lee, M., Marques, T., Schrimpf, M., Bashivan, P. (2019), “Large-scale hyperparameter search for predicting human brain responses in the Algonauts challenge” BioRxiv

    Jozwik, K.M., Schrimpf, M., Kanwisher, N. and DiCarlo, J.J. (2019), “To find better neural network models of human vision, find better neural network models of primate vision” BioRxiv

    2018

    Jozwik, K.M., Kriegeskorte, N., Cichy, R. M., Mur, M. (2018), “Deep convolutional neural networks, features, and categories perform similarly at explaining primate high-level visual representations” Conference on Cognitive Computational Neuroscience

    2017

    Jozwik, K.M., Charest I., Kriegeskorte, N. and Cichy, R. M. (2017), “Animacy dimensions ratings and approach for decorrelating stimuli dimensions” Conference on Cognitive Computational Neuroscience

    Jozwik, K.M., Kriegeskorte, N., Storrs, K. R., Mur, M. (2017), “Deep Convolutional Neural Networks Outperform Feature-Based But Not Categorical Models in Explaining Object Similarity Judgments” Frontiers in Psychology 8(10):1726

    2016

    Jozwik KM, Chernukhin I, Serandour AA, Nagarajan S, Carroll JS (2016), “FOXA1 Directs H3K4 Monomethylation at Enhancers via Recruitment of the Methyltransferase MLL3.” Cell Reports 17(10):2715-2723.

    Jozwik KM, Kriegeskorte N, Mur M (2016), “Visual features as stepping stones toward semantics: Explaining object similarity in IT and perception with non-negative least squares.” Neuropsychologia 83:201-26.

    2012

    Jozwik KM, Carroll JS (2012), “Pioneer factors in hormone dependent cancers.” Nature Reviews Cancer 12(6):381-5.