Dr David Parker

David Parker

University position


Dr David Parker is pleased to consider applications from prospective PhD students.


Department of Physiology, Development and Neuroscience



Home page


Research Themes

Systems and Computational Neuroscience

Cellular and Molecular Neuroscience


We examine cellular and synaptic properties in neuronal networks using the lamprey spinal cord locomotor network as a model system. While this network is claimed, and often cited, as being characterised, there are actually significant gaps in our understanding of the network, and in the claimed experimental data (see Parker 2006, 2010).

We combine various approaches to examine:

How short-term activity-dependent synaptic plasticity influences network outputs.

Network cellular and synaptic variability .

Interactions between activity-dependent and modulatory plasticity (“metaplasticity” and “metamodulation”).

A major focus is on recovery after spinal cord lesions. Lower vertebrates recover function after complete spinal lesions. While this is thought to reflect regeneration across lesion sites, there are also changes in networks above and below lesion sites, in sensory feedback, and in neuromodulator-evoked plasticity. We are investigating how these effects influence recovery.

Research Focus






neural circuit

Clinical conditions

No direct clinical relevance


Cell culture

Computational modelling

Electrophysiological recording techniques

Intracellular recording


No collaborators listed

Associated News Items

Key publications

Parker D (2006), “Complexities and uncertainties of neuronal network function” Philosophical Transactions of the Royal Society B: Biological Sciences 361:81-99

Parker D (2003), “Activity-Dependent Feedforward Inhibition Modulates Synaptic Transmission in a Spinal Locomotor Network” J Neurosci 23:11085-11093



Bickel J, Parker D (2022), “Revolutions in 'wet' neurobiology” The SAGE Handbook of Cognitive and Systems Neuroscience

D Parker (2022), “Neurobiological reduction: From cellular explanations of behavior to interventions” Frontiers in Psychology 22 December

David Parker (2022), “Assumptions of 20th century neuroscience: reductionist and computational paradigms,” nterdisciplinary Science Reviews DOI: 10.1080/03080188.2022.2149736

Parker D (2022), “The functional properties of synapses made by regenerated axons across spinal cord lesion sites in lamprey” Neural Regeneration Research Oct;17(10):2272-2277


Parker D (2021), “Understanding brain circuits: do new experimental tools need to address new concepts?” In The Tools of Neuroscience Experiment: Philosophical and Scientific Perspectives (pp. 239-259). New York: Routledge.


Becker M, Parker D (2019), “Time course of functional changes in locomotor and sensory systems after spinal cord lesions in lamprey. ” Journal of Neurophysiology 121:2323-2335.

Parker D (2019), “Psychoneural reduction: a perspective from neural circuits” Biology and Philosophy 34:44

Svensson E, Aspergis-Schoute J, Burnstock G, Nusbaum M, Parker D, Schioth H (2019), “General Principles of Neuronal Co-transmission: Insights From Multiple Model Systems. ” Frontiers in Neural Circuits https://doi.org/10.3389/fncir.2018.00117.


D Parker (2018), “Kuhnian revolutions in neuroscience: the role of tool development” Biology and Philosophy 33:17

D Parker and TJ McClelland (2018), “Neuromodulator interactions and spinal cord injury in lamprey” Neural Regen Res 13(4):643-644

Parker D (2018), “Functional changes after spinal lesions: implications for interventions ” Neural Regen Res 13(5):811-812


D Parker (2017), “The Lesioned Spinal Cord Is a "New" Spinal Cord: Evidence from Functional Changes after Spinal Injury in Lamprey.” Frontiers in Neural Circuits 11:84

McClelland TJ, Parker D (2017), “Inverse modulation of motor neuron cellular and synaptic properties can maintain the same motor output” Neuroscience Volume 360, 30 September 2017, Pages 28-38


Jia Y, Parker D (2016), “Short-Term Synaptic Plasticity at Interneuronal Synapses Could Sculpt Rhythmic Motor Patterns” Frontiers in Neural Circuits 10:4. doi: 10.3389/fncir.2016.00004


Becker MI, Parker D (2015), “Changes in functional properties and 5-HT modulation above and below a spinal transection in lamprey” Frontiers in Neural Circuits 8:148

Parker D (2015), “Synaptic Variability Introduces State-Dependent Modulation of Excitatory Spinal Cord Synapse” Neural Plasticity Volume 2015 (2015), Article ID 512156, 14 pages http://dx.doi.org/10.1155/2015/512156


Srivastava V, Sampath S, Parker DJ (2014), “Overcoming Catastrophic Interference in Connectionist Networks Using Gram-Schmidt Orthogonalization.” PLoS ONE 9(9):e105619


Parker D, Srivastava V (2013), “Dynamic systems approaches and levels of analysis in the nervous system” Frontiers in Physiology 4, 15

Svensson E, Kim O, Parker D (2013), “Altered GABA and somatostatin modulation of proprioceptive feedback after spinal cord injury in lamprey. ” Neuroscience 235: 109-118


Cooke RM, Luco S, Parker D (2012), “Manipulations of spinal cord excitability evoke developmentally-dependent compensatory changes in the lamprey spinal cord.” J Comp Physiol A Neuroethol Sens Neural Behav Physiol 198(1):25-41 Details


Hoffman N, Parker D (2011), “Interactive and individual effects of sensory potentiation and region-specific changes in excitability after spinal cord injury.” Neuroscience 199:563-76 Details


N Hoffman, D Parker (2010), “Lesioning alters functional properties in isolated spinal cord hemisegmental networks” Neuroscience 168: 732-743

Parker D (2010), “Neuronal network analyses: premises, promises and uncertainties.” Philos Trans R Soc Lond B Biol Sci 365(1551):2315-28 Details


Cooke RM, Parker D (2009), “Locomotor recovery after spinal cord lesions in the lamprey is associated with functional and ultrastructural changes below lesion sites.” J Neurotrauma 26: 597-612

Cooke RM, Parker D (2009), “Locomotor recovery after spinal cord lesions in the lamprey is associated with functional and ultrastructural changes below lesion sites.” J Neurotrauma 26(4):597-612 Details


Baudoux S, Parker D (2008), “Baudoux S, Parker D (2008) Glial toxin-mediated disruption of spinal cord locomotor network function and its modulation by 5-HT. ” Neuroscience 153:1332–1343.

Bevan S, Vakharia V, Parker D (2008), “Changes in gene expression and integrin-mediated structural changes are associated with long-term plasticity of a spinal cord locomotor network. ” Neuroscience 152:160-168

Srivastava V, Parker D, Edwards S (2008), “The nervous system might ‘orthogonalize’ to discriminate. ” J Theor Biol 253:514-517


Parker D (2007), “The role of activity-dependent synaptic plasticity and variability in the patterning of oscillatory network activity.” Neuronal Network Research Horizons. Nova Science Publications. Editor: Martin L Weiss, pp 1-60

Parker D, Bevan S (2007), “Modulation of cellular and synaptic variability in the lamprey spinal cord.” J Neurophysiol 97(1):44-56 Details

Parker D, Gilbey T (2007), “Developmental differences in neuromodulation and synaptic properties in the lamprey spinal cord.” Neuroscience 145(1):142-52 Details


Parker D (2006), “Complexities and uncertainties of neuronal network function.” Philos Trans R Soc Lond B Biol Sci 361(1465):81-99 Details

Parker D (2006), “Neuroscience and society.” International Journal of the Interdisciplinary Social Sciences 1


Parker D (2005), “Pharmacological approaches to functional recovery after spinal injury.” Curr Drug Targets CNS Neurol Disord 4(2):195-210 Details


Bevan S, Parker D (2004), “Metaplastic facilitation and ultrastructural changes in synaptic properties are associated with long-term modulation of the lamprey locomotor network.” J Neurosci 24(42):9458-68 Details


Parker D (2003), “Variable properties in a single class of excitatory spinal synapse.” J Neurosci 23(8):3154-63 Details

Parker D (2003), “Activity-dependent feedforward inhibition modulates synaptic transmission in a spinal locomotor network.” J Neurosci 23(35):11085-93 Details