Quantifying pig welfare during transport using physiological measures.

Broom, D. M.

Department of Clinical Veterinary Medicine, Cambridge University, Madingley Road, Cambridge CB3 OES, UK.

Summary

In order to assess the welfare of pigs encountering short-term problems, such as those associated with handling and transport, a range of measures including those of physiology, behaviour and carcass quality should be used. Some expertise in interpreting the measures and a knowledge of basal levels and their daily fluctuations is needed. Particularly valuable physiological measures include heart rate, lysine vasopressin, lactate dehydrogenase and cortisol. Cortisol can be measured in saliva or plasma.

Introduction

The welfare of an animal is its state as regards its attempts to cope with its environment (Broom 1986). Hence the animal’s welfare includes its health, its feelings, the extent to which coping attempts are succeeding and the amount which has to be done in order to cope. Welfare varies from very good to very poor and it can be measured. The concept and the ways in which it can be measured are discussed in detail by Broom and Johnson (1993). Some scientific studies of animal welfare involve assessing the preferences of the animal, others indicate how poor the welfare is, for example by the extent of abnormalities of behaviour or physiology, the presence of injuries or the degree of clinical signs of disease (Table 1, Table 2).

Table 1. Measures of poor welfare

<table>
<thead>
<tr>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced life expectancy</td>
</tr>
<tr>
<td>Reduced ability to grow or breed</td>
</tr>
<tr>
<td>Body damage</td>
</tr>
<tr>
<td>Disease</td>
</tr>
<tr>
<td>Immunosuppression</td>
</tr>
<tr>
<td>Physiological attempts to cope</td>
</tr>
<tr>
<td>Behavioural attempts to cope</td>
</tr>
<tr>
<td>Behaviour pathology</td>
</tr>
<tr>
<td>Self narcotization</td>
</tr>
<tr>
<td>Extent of behavioural aversion shown</td>
</tr>
<tr>
<td>Extent of suppression of normal behaviour</td>
</tr>
<tr>
<td>Extent to which normal physiological processes and anatomical development are prevented</td>
</tr>
</tbody>
</table>
Table 2 Measures of good welfare.

| Variety of normal behaviours shown | Extent to which strongly preferred behaviours can be shown | Physiological indicators of pleasure | Behavioural indicators of pleasure |

from Broom and Johnson 1993.

The measures described in Table 1 and Table 2 refer to long-term and short-term welfare problems. When assessing the welfare of the animals it is important to use a wide range of welfare measures, including physiological, behavioural (Lambooy et al. this volume) and meat quality (Barton Gade et al., this volume) measures. The different kinds of measures must be considered together because animals vary in the methods which they use to try to cope with adversity and in the effects which adverse conditions have on them.

The major aspects of transport which affect the welfare of pigs are loading and unloading procedures including the effects of close proximity to humans, vehicle conditions, (see Randall et al., this volume), the way that the vehicle is driven (Randall, loc. cit.), what happens during stops, and the duration of the journey. The response of the pig to these different aspects will depend on the genetically controlled adaptability of the pig, physical condition of the pig and the previous experience. Our modern breeds of pig have been selected for large muscle blocks, fast growth and efficient feed conversion and nutrient partitioning. When the wild boar was compared with modern breeds of pig, the modern German Landrace was found to have muscles with a greater distance from the centre to the nearest blood vessel and more anaerobic fibres and also a relatively smaller heart (Dämmrich 1987). The least well adapted pigs for the stresses of transport are those which are extreme in these effects, for example those with the halothane positive gene, but all pigs have serious problems during transport which are generally reflected in some impairment of meat quality. It may well be that the meat quality of all pigs which are transported is worse than it would be if no transport occurred. Part of the solution to this welfare and economic problem is to take account of what the pig will have to put up with during transport when developing genetic strains of pig. Pigs with smaller muscle blocks and less risk of susceptibility to high levels of exercise and to stress could be selected.

The fact that pigs which are in poor physical condition and pigs which have no previous experience of stimuli encountered during transport are more likely to be adversely affected by transport should be taken into account by farmers and pig transporters. No animal which is in poor condition should be transported in the
normal way. Animals which are weakened but not seriously ill or injured should be provided with better conditions than those needed by the average pig, for example, they should be given more space deep bedding and especially considerate driving. Animals which have a broken bone or which are not able to stand and walk easily using all four legs should not be transported at all. Pigs are often frightened by human proximity or actions during loading and unloading. With careful considerate behaviour on the part of human handlers, such adverse effects on pig welfare can be minimised. However, it has been shown (Hemsworth et al. 1986) that a small amount of early handling, preferably gentle handling, can make pigs much easier to handle later in life. Indeed it may well be economically worthwhile, as well as better for pig welfare, if all pigs are accustomed to human handling and presence when young.

The physiological measures

Whenever physiological measurement is to be interpreted it is important to ascertain the basal level for that measure and how it fluctuates over time. For example, plasma cortisol levels in pigs vary during the day and tend to be higher during the morning than during the afternoon. A decision must be taken for each measure concerning whether the information required is the difference from baseline or the absolute value. For small effects, e.g. a 10% increase in heart rate, the difference from baseline is the key value to use. The large effects where the response reaches the maximal possible level, for example, cortisol in plasma in very frightening circumstances, the absolute value should be used. In order to explain this, consider a pig severely frightened during the morning and showing an increase from a rather high baseline of 160 nmol l⁻¹ but in the afternoon showing the same maximal response which is 200 nmol l⁻¹ above the lower afternoon baseline. It is the actual value which is important here rather than a difference whose variation depends on baseline fluctuations.

Heart rate

Animals change their heart rate in response to changes in metabolic rate but they also increase or decrease heart rate in preparation for an action which they predict as being necessary in the near future. It is the psychological preparation response which is of interest when assessing welfare rather than the changes which merely reflect activity levels. A method of assessing heart rate responses to imposed treatments taking account of ongoing activity, is described for sheep by Baldock and Sibly (1990). Heart rate gives valuable information about the perception of loading and handling situations by pigs. Pigs which are prodded with rods, shouted at or driven up steep ramps show different heart rate increases according to what they
perceive as the severity of the situation. The simplest recording system which is
suitable for use in the assessment of pig welfare during transport is the Polar Sport
Tester, originally designed for human athletes to monitor their own heart rates. The
heart rate trace can be plotted and stored on a computer and then related to
descriptions of behaviour perhaps obtained from video-recording. In addition to
monitoring pigs during loading or unloading, the heart rate record can be related to
information recorded about events during a journey on a vehicle. Sudden movements
or temporary increases in ambient temperature can be associated temporally with
differences in heart rate.

Breathing rate, muscle tremor, foaming at the mouth

Direct observation of animals without any attachment of recording
instruments or sampling of body fluids can provide information about physiological
processes. Breathing rate can be observed directly or from good quality video
recordings. The metabolic rate and level of muscular activity are major determinants
of breathing rate but an individual pig which is disturbed by events in its environment
may suddenly start to breathe fast. Muscle tremor can be directly observed and is
sometimes associated with fear. Foaming at the mouth can have a variety of causes,
so care is needed in interpreting the observations, but its occurrence may provide
some information about welfare.

Body temperature

Animals which have substantial adrenal cortex responses during handling and
transport show increased body temperature (Trunkfield et al 1991). The increase is
usually of the order of 1° C but the actual value at the end of a journey will depend
upon the extent to which any adaptation of the initial response has occurred. Hence if
the temperature of pig blood at the time of slaughter is measured it is essential that the
details of the journey are considered when interpreting the result. The body
temperature can be recorded during a journey with implanted or superficially attached
temperature monitors linked directly or telemetrically to a data storage system.

Lysine vasopressin

In humans, vasopressin increases in the blood when the individual reports a
feeling of nausea associated with motion sickness. Pigs also show motion sickness,
retching and ejecting gut contents, especially when travelling along windy roads.
These physical signs of motion sickness occur at the same time as increases in the
levels of lysine vasopressin in the blood.
Oxytocin

This hormone increases in difficult conditions in rats but it is not clear at present that its measurement is useful in this respect in pigs.

Beta-endorphin

The release of corticotrophin releasing factor in the hypothalamus is followed by release of pro-opiomelanocortin (POMC) in the anterior pituitary which quickly breaks down into components, being adrenocorticotrophic hormone (ACTH) which travels in the blood to the adrenal cortex, and beta-endorphin. A rise in plasma beta-endorphin often accompanies ACTH increases in plasma but it is not yet clear what its function is. Although beta endorphin can have analgesic effects via mu-receptors in the brain, this peptide hormone is also involved in the regulation of various reproductive hormones. Measurement of beta-endorphin levels in blood is useful in anticipation of our learning how to interpret such changes or as a back up for ACTH or cortisol measurement.

Enzymes in blood

Creatine kinase is released into the blood when there is muscle damage e.g. bruising, and when there is vigorous excercise. It is clear that some kinds of damage which effect welfare result in creatine kinase release so it can be used in conjunction with other indicators as a welfare measure. Lactate dehydrogenase (LDH) also increases in the blood after muscle tissue damage but increases can occur in animals whose muscles are not damaged. Deer which are very frightened by capture show large LDH increases (Jones and Price 1990). The isomer of LDH which occurs in striated muscle (LDH5) leaks into the blood when animals are very disturbed so the ratio of LDH5 to total LDH is of particular interest.

Water and food depletion measures

When pigs are transported they will be deprived of water to some extent. On long journeys they will have been unable to drink for many times longer than the normal interval between drinking bouts. This lack of control over interactions with the environment may be disturbing to the pigs and there are also likely to be physiological consequences. The most obvious and straight forward way to assess this is to measure the osmolality of the blood. When food reserves are used up there are various changes evident in the metabolites present in the blood. Several of these, for
example beta-hydroxy butyrate, can be measures and indicate the extent to which the food reserve depletion is serious for the animal. Another measure which gives information about the significance for the animal of food deprivation is the delay since the last meal. Pigs are accustomed to feeding at regular times and if feeding is prevented, especially when high rates of metabolism occur during journeys, the animals will be disturbed by this.

Blood cell measures

The haematocrit, a count of red blood cells, is altered when pigs are transported. If pigs encounter a problem, such as those which may occur when they are handled or transported, there can be a release of blood cells from the spleen and a higher cell count. More prolonged problems, however, are likely to results in reduced cell counts.

The ability of the pig to react effectively to antigen challenge will depend upon the numbers of lymphocytes and the activity and efficiency of these lymphocytes. Measures of the ratios of white blood cells, for example the heterophil ratio, are affected by a variety of factors but some kinds of restraint seem to affect the ratio consistently so they can give some information about welfare. Studies of T-cell activity e.g. in vitro mitogen stimulated cell proliferation, give information about the extent of immunosuppression resulting from the particular treatment. If the immune system is working less well because of a treatment, the animal is coping less well with its environment and the welfare is poorer than in an animal which is not immunosuppressed.

Glucocorticoid measures

One of the most widely used measures of pig welfare during transport is the level of glucocorticoids in the plasma. Glucocorticoid levels can increase during courtship and mating but there will be no confusion with this during transport. In most cases it is cortisol which is measured but pigs produce as much as 30% of their glucocorticoid as corticosterone so this should also be measured. Glucocorticoid can be measured in saliva and urine as well as in plasma and the collection of saliva and urine can sometimes be much less disturbing to the pigs than the collection of plasma samples.

The use of saliva cortisol measurement is now considered. In the plasma, most cortisol is bound to protein but it is the free cortisol which acts in the body. Hormones such as testosterone and cortisol can enter the saliva by diffusion in salivary gland cells. The rate of diffusion is high enough to maintain an equilibrium between the free cortisol in plasma and in saliva. The level is ten or more times lower in saliva but
stimuli which cause plasma cortisol increases also cause comparable salivary cortisol increases in humans (Riad-Fahmy et al 1982), sheep (Fell et al 1985), pigs (Parrott et al 1989) and some other species. The injection of pilocarpine and sucking of citric acid crystals, which stimulate salivation, have no effect on the salivary cortisol concentration. However any rise in salivary cortisol levels following some stimulus is delayed a few minutes as compared with the comparable rise in plasma cortisol concentration. In recent studies using sows and young pigs (Mendl, Broom and Parrott, in prep) plasma free cortisol and salivary cortisol varied in a similar way when a large change in level occurred but fluctuated more when low levels changes were occurring.

References

1.1 Quantifying pig welfare by physiological and endocrinological parameters (D. Broom), (Discussion leader: F. Feldhusen (G))

P. Warriss, GB: I have some difficulties when interpreting physiological responses. Where is the indicator-level in relation to the basal-levels?

D. Broom, GB: There is no absolute basal-level, we have always to define it first in our experiments. Cortisol for example rises when energy is needed by the animal. This energy could be for a 'normal' situation like mating or an 'abnormal' situation like transport-stress. Cortisol gives a graded response according to the perceived magnitude of the problem and we have to see where the first measurable increase or significant rise is.

A. Fisher, Ire: Is it possible to describe the state-of-the animal or how it perceives in relation to its previous experiences?

D. Broom, GB: Stress is not the same as stimulation. If there is an adverse situation for long enough then I would refer to stress. So we have to take the context of the events into account.

P. Barton-Gade, DK: When we take only one blood-sample after slaughter from the sticking-blood, we have no baseline within applied research, but a number of individual levels. We compare these with an average resting-level. Could you describe the resting-level for cortisol in pigs?

D. Broom, GB: The basal-level for total plasma cortisol in pigs depends on age and other factors but in one study it was 5-20 nmol/l.

P. Warriss, GB: Could you give us a maximum level for comparison?

D. Broom, GB: For some individuals it is about 250 nmol/l but there is considerable variation.

M. Honkavaara, Fin: Is there a relation between pH1 and sticking-blood temperature?

A. Schütte, G: There is a relation but no correlation. Groups with a comparable high sticking blood temperature tend to have a lower pH1 than groups of pigs with a lower sticking blood temperature.

P. Barton-Gade, DK: And also the differences between populations are important, when comparing measurements.

J. Hartung, G: Moreover there are individual differences. Could we perhaps form a welfare-index and how is it related to suffering?

D. Broom, GB: If an animal suffers, welfare is poor. We cannot always identify suffering but we have to try to assess the welfare. If the animal has a broken leg or a serious disease condition it is quite clear, that it suffers and has difficulties in coping with its environment. But in many cases it is not so clear, whether the animal suffers or not. However we still have to use the indicators of how well the animal is able to cope with its environment. A transported animal may show moderately increased heart rate or elevated cortisol in one condition but not in another. This would be a low level in our
welfare index. A more substantial physiological response would be a higher level. Alternatively we may use behavioural measures in our index. Briefly baulking at a disturbing stimulus is a low level response, prolonged freezing or panic running is a high level response. The index should certainly involve a good range of welfare indicators because animals vary in their responses to adversity. In our project we are using a number of measurements which together form a welfare index.