Animal behaviour as an indicator of animal welfare in different housing and management systems

D.M. Broom, Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.

Summary

Measurements of animal behaviour can give information about the extent to which animals have difficulties in coping with problems in life, failure to cope with adversity, and the importance of various resources and sensory inputs to the animal. Hence they can tell us something about the feelings of animals, their health and their welfare in general. In scientific studies of animal welfare, measurements of behaviour should be combined with those of physiological and immunological state, injury, disease, growth, reproduction and life expectancy. Normal behaviour must be known before the degree of abnormal or emergency response can be evaluated. Short-term pain, fear and other aspects of poor welfare in brief periods can be assessed by one set of behavioural measures whilst long-term problems such as frustration and lack of control require a different set of measures. Quantitative measures of the strength of aversion and positive preference are of particular value in the design of housing and management systems.

Key words Welfare, stress, abnormal behaviour, suffering.

Welfare and stress

The term welfare is applied to all animals including humans, those in the wild, those kept in farms, laboratories or zoos and those kept for working or as companions. We do not talk about the welfare of plants, micro-organisms or inanimate objects but the word stress is applied to plants. A definition of welfare which can be used in the scientific, legal and public domains is: the welfare of an individual is its state as regards its attempts to cope with its environment (Broom 1986). In other words, how well does the individual fare or go through life. This definition refers to a characteristic of the individual at a time, not to something which is given to the individual. Welfare will vary over a range from very good to very poor.

When facing problems in life, the individual may fail to cope, in that it dies or is unable to grow or reproduce, or it may cope but only with difficulty. In either case, welfare is poor. Many aspects of attempting to cope involve brain mechanisms. Failure to cope and difficulty in coping are therefore associated with psychological consequences, often together with bad feelings. There may also be behavioural,
physiological, immunological and disease incidence changes when welfare is poor. When there are no problems, welfare will be good. Positive feelings occur on many occasions when welfare is good and are associated with certain physiological consequences. Some authors (Duncan and Petherick 1991) limit the meaning of welfare to considerations of feelings but most people would include aspects of disease, injury or immunosuppression as part of welfare whether or not feelings are involved (see later).

Stress is one aspect of poor welfare. To most people, stress means something bad but the use of the term stress to mean "something which causes adrenal cortex activity" or "any perturbation of homeostasis" have led to considerable confusion in its use. Adrenal cortex activity can occur in normal or good situations as well as in those which have potentially adverse effects on the individual so it is not biologically useful to equate all of such activity with stress. Similarly, the word stress is of little or no value if it is merely equated with stimulation which affects basic body functioning. It is better to reserve the word stress for situations where there is some real adversity resulting from a failure of the control systems which exist in the brain and other parts of the body. The ultimate measure of adversity is impairment of biological fitness so a definition is: "stress is an environmental effect on an individual which overtaxes its control systems and reduces its fitness or appears likely to do so" (Broom and Johnson 1993).

Hence stress is that part of poor welfare where the individual cannot cope with its environment. Not coping will ultimately mean severe adversity to the point where there is reduced fitness. However, in many circumstances where stress is being assessed there is an indication of failure to cope rather than a direct measure of fitness reduction. Welfare may be poor in situations where there is no stress because the individual is coping with its environment even though it is with difficulty. Whilst welfare can be good, however, stress cannot be good. This has been one of the confusing aspects of the other definitions of stress mentioned above. Varied early experience and some exposure to a variety of events in the world is good for an individual because it helps in the development of effective coping systems but the experiences are not stress and stress is never "good for you".

Another term which is related to welfare is health. Health refers to coping with the pathological impact of the environment so it is a narrower term than welfare. Health also varies from very good to very poor so health is included within welfare and concerns the presence or absence of pathology and disease. Poor health will always mean poor welfare but there could be good health combined with some other problem so that welfare is not good overall.

Wherever poor welfare involves bad feelings there is suffering. Feelings are biological mechanisms which have evolved like any other mechanism. (Dawkins
1977, Broom in press). Feelings such as pain, malaise, fear or anxiety are often adaptive but still indicate poor welfare because they occur when the individual is having difficulty in coping with the environment. However, poor welfare can be indicated by other coping difficulties such as immunosuppression or injury whilst asleep, in which cases there is no suffering. Similarly, a variety of positive feelings can occur when welfare is good but will not always do so. The topics discussed in this section are explained further by Broom and Johnson (1993) and Broom (1996).

Assessing welfare

Animals have problems when needs are not satisfied so we should try to find out about needs. They also have problems when there is a direct adverse effect of the environment such as something which can or does cause an injury or an attack by a pathogen. The specification of the freedoms which we should give to animals provides a good general guideline for how to minimise poor welfare but in many species of animals, scientific studies have progressed to the point where we can be more precise, considering needs and assessing welfare directly.

The range of welfare indicators listed in Table 1 includes some measures of stress. Both Table 1 and Table 2 refer to behavioural and non-behavioural measures. In order to assess welfare effectively, a wide range of measures is needed and these must be combined if the complete range of coping mechanisms and the complete array of adverse effects of the environment on individuals is to be taken into account.

<table>
<thead>
<tr>
<th>Table 1 Measures of poor welfare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced life expectancy</td>
</tr>
<tr>
<td>Reduced ability to grow or breed</td>
</tr>
<tr>
<td>Body damage</td>
</tr>
<tr>
<td>Disease</td>
</tr>
<tr>
<td>Immunosuppression</td>
</tr>
<tr>
<td>Physiological attempts to cope</td>
</tr>
<tr>
<td>Behavioural attempts to cope</td>
</tr>
<tr>
<td>Behaviour pathology</td>
</tr>
<tr>
<td>Self narcotization</td>
</tr>
<tr>
<td>Extent of behavioural aversion shown</td>
</tr>
<tr>
<td>Extent of suppression of normal behaviour</td>
</tr>
<tr>
<td>Extent to which normal physiological processes and anatomical development are prevented.</td>
</tr>
</tbody>
</table>

(from Broom and Johnson 1993)
Table 2 Measures of good welfare

<table>
<thead>
<tr>
<th>Variety of normal behaviours shown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extent to which strongly preferred behaviours can be shown</td>
</tr>
<tr>
<td>Physiological indicators of pleasure</td>
</tr>
<tr>
<td>Behavioural indicators of pleasure</td>
</tr>
</tbody>
</table>

(from Broom and Johnson 1993)

In animals like vertebrates which have elaborate mechanisms for trying to control their interactions with their environment, there will almost always be psychological aspects of welfare problems so behavioural measures must always be a part of comprehensive attempts to assess welfare. Where individuals are trying to cope, or are failing to do so, brain changes will affect: brain chemistry and electrical activity, various physiological systems, immune systems and behaviour.

When a sensory input to nociceptive systems occurs there are various changes in the peripheral nervous system and spinal cord but the sensation of pain involves changes in the brain and various brain systems will be involved in most painful experiences. Hence pain is likely to affect behaviour, as are many feelings of malaise, fear or anxiety. Whenever there is some degree of specific frustration or more general lack of control over interactions with its environment, the individual will be functioning in a different way psychologically from an individual which does not have such welfare problems. The same is true of individuals which have such a lack of environmental variety that they feel boredom, or those subjected to specific deprivations or some degree of sensory or processing overload. In most cases there will be potentially measurable behavioural changes. At the other extreme, absence of problems could be associated with feelings of happiness, pleasure or joy. The psychological indicators of such good welfare are lack of any behavioural coping behaviour, or a wide range of normal behaviour, or particular behaviours or physiological states which occur only when welfare is good. Good feelings must normally involve the knowledge that coping is effective and not difficult and some particular additional sensations.

Examples of the use of behavioural indicators of welfare

Normal and preferred behaviour

In order to recognise abnormalities of brain functioning, body physiology or behaviour it is essential to know what is normal. Those who have watched or otherwise investigated normal animals closely are much more likely to detect the abnormal in each of these different areas. Many authors have described the normal
behaviour of animals in appropriate complex environments. For example, Stolba and Wood-Gush (1989) studied pigs kept in an area of field, trees and bushes and described how sows spent the daytime period. They spent much time grazing and rooting and were considerably more active than most housed sows. More specialist studies of what constitutes normal behaviour include the work of Ketelaar de Lauwere and Smits (1989) who described the various postures adopted by calves whilst lying and compared these with postures adopted whilst confined in a crate. Calves most commonly adopted a position partly on their sides with the legs partially extended and the head turned sideways to rest on the legs. All calves also adopted at some time a side-lying posture with the legs stretched out. In the narrow crates, neither of these postures was possible but a third lying posture, sternal lying, was used for most of the time. Since animals usually carry out behaviours and adopt postures because it is important to them to do so, welfare is likely to be less good in conditions where such behaviours are impossible.

Experimental studies can also be used to find out what are the strong preferences of animals. The strength of a positive preference for a resource or for the opportunity to carry out an activity can be quantified by making the animal work for it or forego some other important resource such as food or social contact in order to obtain it. Such studies do not indicate welfare directly but they provide information upon which to evaluate it since welfare will be better in the circumstance where strongly preferred activities can be carried out.

Abnormal behaviour

If an individual is unable to carry out preferred behaviour, or if it is frustrated, frightened or depressed, its behaviour is likely to be abnormal. The abnormality may be in quality or in quantity. Examples of behaviour abnormalities associated with having to live in inadequate conditions are: inactivity, apathy and unresponsiveness, stereotypies, extra aggression and self mutilation.

An example of a situation where welfare is poor and psychological problems result in abnormalities of behaviour is the pain associated with castration in young piglets. In a study by Wemelsfelder and van Putten (1985) the behaviour of handled piglets was compared with that of piglets which were handled and surgically castrated without an anaesthetic. The castrated piglets showed an immediate vocal response in that they produced higher pitched squeals with more variation in pitch. For some time after castration the piglets showed abnormal standing, walking and lying behaviour. For two or three days, they moved in such a way that tension was not exerted on the cut scrotal region. They slid the legs rather than moving them normally and their movements during lying down and standing up were atypical. With other types of pain, different behaviour changes occur. Species vary in the
extent to which they show behavioural responses to pain, for example sheep show small behavioural responses but large physiological responses to the mulesing operation in which an area of skin 50 cm² in area is cut off their perianal region with scissors (Shutt et al 1987). These sheep, which showed little behavioural response at the time of the mulesing, did show abnormal posture and locomotion some time after the operation and strongly avoided the people who had restrained them during the operation (Fell and Shutt 1989).

Chronic pain may result in clear behaviour changes such as limping or lethargy. In many cases, the use of analgesics can reveal whether or not the behaviour change is a consequence of pain in that analgesia makes the abnormal behaviour disappear. For example, Duncan et al (1991) suspected that large male breeding turkeys suffered from leg pain. They recorded the behaviour of the turkeys in a general activity test and in a test in which the males were exposed to breeding females. The behaviour of these particularly heavy male turkeys was greatly affected by the analgesic in a way which indicates that the turkeys were normally considerably affected by leg pain. They showed 75% more walking and feeding, approached females with 70% less latency and at 60% greater speed and attempted 55% more mounts.

When animals are frightened the psychological changes affect both their physiological and behavioural responses. Whether the response is freezing or active escape, adequate assessment requires measures of behaviour, adrenal and heart rate changes. A single measure may not give sufficient information about the degree of fear and it is better to look for both active and inactive responses using a range of measurements rather than for example, just measuring the duration of tonic immobility.

Lack of control over the events which seriously affect the life of an individual results in particularly poor welfare. Domestic animals have complex systems for regulating their lives (Broom and Johnson 1993) and the psychological effects of failure of these systems can result in a variety of behavioural, physiological and brain chemistry abnormalities. Short term frustration, such as inability to reach a regularly supplied food source in hens (Duncan and Wood-Gush 1972) and inability to build a nest prior to egg-laying in hens or farrowing in sows, is indicated by stereotypies such as pacing or bar-biting. Long term confinement, with its many frustrating consequences, can also result in a high level of stereotypies. Confinement and lack of specific stimuli or general environmental variety may also lead to apathy which is indicated by reduced activity and lack of responsiveness. Specific deprivations such as absence of a teat in young calves, or absence of material to manipulate in pigs, often lead to sucking at inappropriate objects and tail-biting respectively. Some behavioural abnormalities can be linked to changes in the densities of mu and kappa opioid receptors in the brain (Zanella et al 1996) and many long term problems for
animals are associated with immunosuppression and constitute what Moberg (1987) has described as a pre-pathological state.

Indicators of good welfare

Good welfare, which is often associated with feelings of contentment or happiness may result in recognisable behavioural and physiological changes which allow the recognition of the state. However some apparent indicators are sometimes false. A person who smiles may be acting as if happy when actually not happy and a dog which wags its tail may be indicating subservience to a human rather than happiness. However, careful studies should allow the evaluation of such measures. As mentioned in Table 2, the breadth of normal behaviour and the proportion of strongly preferred behaviour which can be shown are also important indicators of good welfare.

Conclusions

A lot of welfare problems, including many of the most serious problems, involve brain functioning and so are likely to affect behaviour. Information about psychological responses comes from many indicators, including measurements of body physiology, brain function and behaviour. Even indicators of poor welfare such as injuries, immunosuppression and extent of disease will have important effects on the brain. Hence a high proportion of welfare assessment necessitates the measurement of effects on behaviour.

Many different measurements can be used in the assessment of welfare and the best studies will utilise a range of relevant measurements. Measures of physiology, behaviour, disease etc. should be made and their results integrated in order to decide how good or how poor the welfare of an individual is.

References

